Bepaal x en kies die regte antwoord \( 3{x^2} + x - 1 + \frac{1}{{3{x^2} + x - 3}} = 0 \)
\(
\begin{align}
3{x^2} + x - 1 + \frac{1}{{3{x^2} + x - 3}} &= 0\\
{\rm{Stel }}\,\,k &= 3{x^2} + x\\
\therefore k - 1 + \frac{1}{{k - 3}} &= 0\\
KGV &= k - 3;BPK:k \ne 3\\
\left( {k - 1} \right)\left( {k - 3} \right) + 1 &= 0\\
{k^2} - 4k + 3 + 1 &= 0\\
{k^2} - 4k + 4 &= 0\\
\left( {k - 2} \right)\left( {k - 2} \right) &= 0\\
\therefore k &= 2\\
{\rm{maar }}\,\,k &= 3{x^2} + x\\
\therefore 3{x^2} + x &= 2\\
3{x^2} + x - 2 &= 0\\
\left( {3x - 2} \right)\left( {x + 1} \right) &= 0\\
x = \frac{2}{3}\,\,{\rm{of}}\,\,x &= 1
\end{align}
\)