\( \( \begin{align}
{y^2} - y - 3 &= \frac{9}{{{y^2} - y - 3}}\\
{\rm{Stel }}{y^2} - y - 3 &= k\\
k &= \frac{9}{k}\\
KGV &= k\\
BPK:k &\ne 0\\
{k^2} &= 9\\
{k^2} - 9 &= 0\\
\left( {k - 3} \right)\left( {k + 3} \right) &= 0\\
k &= 3&k &= - 3\\
{\rm{maar }}\,\,k &= {y^2} - y - 3\\
\therefore 3 &= {y^2} - y - 3 & - 3 &= {y^2} - y - 3\\
0 &= {y^2} - y - 6 & 0 &= {y^2} - y\\
0 &= \left({y - 3}\right)\left({y + 2}\right) & 0&= y\left( {y - 1} \right)\\
\therefore y &= 3\,\,{\rm{ of }}\,\,y = - 2 & \therefore y &= 0\,\,{\rm{ of }}\,\,y = 1
\end{align} \)
\)